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This part  deals with the syntheses for the deconvolution of the Patterson function when the structure 
is eentrosymmetrie. The interesting result is obtained that  the isomorphous fl-synthesis gives just the 
structure with no background at all. 

1. I n t r o d u c t i o n  

In  Par ts  I and I I  (Ramachandran  & Raman,  1959) 
of this series of papers, three classes of Fourier  s)m- 
theses were proposed, which can be used when par t  
of the s t ructure  is known for the  de te rmina t ion  of the 
remaining atoms in the structure.  In  Pa r t  I I ,  the 
theory  was fully worked out for the case of a non- 
centrosymmetr ic  crystal. I t  is the purpose of the 
present paper  to extend the theory  to the case of a 
centrosymmetr ic  crystal. 

Let  us suppose t h a t  the uni t  cell of the crystal  
contains N atoms. I t  is convenient  to take  N = 2n in 
view of the centrosymmetry .  The structure is then  
given by atoms of s t rength f j  a t  _+ r j  where j = 1 to 
n ( = N / 2 ) .  

Let  us next  invest igate  the na ture  of the  Fourier  
synthesis calculated with the product  FpFQ as the 
coefficient where Fp and FQ refer to the s t ructure  
factors of two centrosymmetr ic  structures,  P and Q 
respectively. Let  fp~ denote the strengths of the 
eqUiwlent ~toms ~t +_rp~,~ In working out the 
modula t ion  of the two structures P and Q, it  is 
convenient  to divide each of them into its two non- 
equivalent  parts,  whose s t ructure  factors may  be 
denoted by Fp, Ivp,, FQ, IVQ, respectively. Then, 

FpFQ = (Fp+Fp,)(_FQ-SFQ,) 
: FpFQ+IVp.FQ,-~Fp, FQ~-Fp, FQ,. (1) 

t The symbols p, q are the number of atoms of type P 
and Q in the asymmetric unit. The symbols P and Q agree 
~dth those in the earlier part, being the total number of atoms 
of each type. Clearly, P---- 2p, Q-- 2q. 

Applying the principle of modula t ion  (Raman,  1959), 
the peaks in the resul tant  s t ructure  are obtained as 
follows: 

fv~fqJ at  _+ (rv, + rqj) ~ i = 1 to p (=  P/2) 
fpifqj at  + ( rp~-rqj)  ] j = l  to q (=Q/2)  . 

The peaks therefore correspond to sums and differ- 
ences of vectors of the atoms p~, q~ and thei r  inverses. 
This par t icular  p roper ty  of the resu l tan t  s t ructure  
plays an impor t an t  par t  in the in te rpre ta t ion  of the  
Pa t te rson  diagram in centrosymmetr ic  crystals, as we 
shall see below. 

2. T h e  P a t t e r s o n  f u n c t i o n  and  the  
s q u a r e d  s t r u c t u r e  

I t  is interest ing to note  t ha t  the  Pa t te rson  funct ion 
and the squared s tructure become identical,  when a 
s t ructure is centrosymmetr ic .  The reason for this is 
t ha t  a centrosymmetr ie  s t ructure  is identical  with its 
inverse, so t ha t  the s t ructure factor FN is the  same 

as its complex conjugate F~*-. It follows that the 
Pat te rson  funct ion becomes identical  with the squared 
structure.  I t  suffices therefore to s tudy  the properties 
of ei ther one. In terpre t ing  the Pa t te r son  funct ion of 
a centrosymmetr ic  s t ructure as the  modula t ion  of the 
s t ructure with itself we get the  following peaks:  

N 
a strong peak ,~ flvj a t  the  origin, 

1 
N ( =  2n) peaks of s t rength f ~  a t  _+ 2rn~ these refer- 

ring to the in tera tomic  vectors between equivalent  
atoms related by inversion and 
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¼(Nz-2N) peaks of strength 2fn~fn¢ at _+ ( r~ - r~¢)  
and an equivalent set of ¼(Ng-2N) peaks each 
of strength 2f, afn~ at _+ (rn~+r~¢). 

The state of affairs may be compared with that  in 
the non-centrosymmetric case where we have a single 
peak Zf21 at origin, ½(N2-N) peaks at rn~-rn¢ of 
strengthfn~fn~ and an equivalent set of ½-(N 2 - A ~) peaks 
at rn¢-rn~. Thus there are 2~2-N-t-1 peaks when 
there is no centrosymmetry but only ½N2+ 1 peaks 
when it is present, where 2V is the number of atoms 
in the fundamental structure. This brings to light the 
interesting fact that  the number of distinct peaks in 
the Patterson is much less (nearly halved) if a struc- 
ture is centrosymmetric than if it is non-centrosym- 
metric. 

3. The 'modulus' ,  the 'phase' and the 'reciprocal' 
structures 

(a) The modulus structure 
This is obtained by employing [F~] as the Fourier 

coefficient. I t  is that  structure which when modulated 
by itself yields the Patterson structure. This argu- 
ment leads to the result that  [Fz¢] structure should 
consist of the following peaks: A peak of strength 
SN(= 1/(2S~)) at the origin, and peaks of strength 
ffni/2Sg at _+2r~i and of 2f~ifnj/(2SN)at both 
_+ (rni q- rn j )  a n d  _+ (rni-- rnj) .  

(b) The phase structure 
The phase synthesis employs the coefficient expiccN 

which reduces now to plus or minus unity. The nature 
of the phase structure can be understood from the 
fact that  the modulation of the phase structure and 
the modulus structure will yield the direct structure 
~'~v (or its equivalent F~). I t  will therefore consist 
peaks of strength f=i/SN at _+r.i and lower order 

2 2 a negative peaks --f~f~d(S~v) at _+ 2rni _+ rnk and 
-fnifnffnldS~v at _+ (rn~ + rnj )  _+ rn~ and at +_ (rn~- rn j )  
+ r ~  (i # j  # k).  

(c) The reciprocal structure 
The reciprocal synthesis employs the coefficient 

1/FN. In the case of a non-centrosymmetric crystal, 
it was shown that  the reciprocal structure resembles 
the inverse structure to a first approximation. As 
centrosymmetry leads to F N = F *  it is natural to 
expect that  the reciprocal of a centrosymmetric struc- 
ture will resemble the structure itself. Actually, one 
obtains peaks of strength fndS~ at _+ rnj and second- 
order negative peaks of strength f~ fndS~ at 
___ 2rn~ q- r n j  a n d  2fn~fnff~dS~, at + (rn~ -t- rn j )  + rn~ a n d  
also at + ( r~--  r~j) + r~k. 

Using these results we shall now investigate the 
nature of the various syntheses, a, fl and y. I t  is 
proposed to discuss the case of a thoroughly and 
merely quote the results for the others. 

4. The ~-class of syntheses  

The general type of this class of syntheses employs the 
Fourier coefficient ~gen= ]FN]2Fp, where /ep denotes 
the contribution of the known part P of the structure. 
I t  was shown in Part  II (Raman, 1959) that  Oigen can 
be expanded as follows: 

O~gen=lFp[2FpW[FqI2Fp+F2F~+[FpI2Fq .  (2) 

I II I II  IV 

In the centrosymmetric case the expression simpli- 
fies, in view of the fact that  F~ ----/~q and IFpI2=F 2, to 

agen= IFP[2FP+ IFQ]2Fp+2IFpI2FQ • (3) 
I II  I I I  

I t  is to be noted that  terms I I I  and IV of expression 
(2) (of the non-centrosymmetric case) have combined 
into a single term in expression (3) (centrosymmetric 
case). Term I refers to the modulation of the Patterson 
of P by the structure P, term II  to the modulation 
of the Patterson of Q by the structure of P, and term 
III  to the Patterson of P by the structure of Q. The 
peaks given by the syntheses and the strengths have 
been worked out from an application of the principle 
of modulation and are given in Table 1. The required 
peaks are 3-1 while the known peaks are 1.1, 2.1 and 
1-2. The others are unwanted background peaks. 

Table 1. Peak strength and position 

Designation Peak strength Peak position 

l" l f:vi Zf~pj ± rp~ 
1.2 fpifzpj + 2rpf + r ~  
1"3 2fpifpffpj + r v i +  (rv¢+ rye) 
1"4 2fpifplfpk _+ r~t  ± (r~t -- r:v~) 
2-1 fpi  S / ~ j  +__ rp ,  
2-2 fpif2Qf + rpi+_2rqj 
2.3 2fpifqlfql¢ +_ rpi ± (rql + rq~) 
2.4 2fpffqffqlc _+ r~o~ + (rqj -- talc) 
3-1 2fqi Sf~oj + rq~ 
3"2 4fqifpgfptc _ rat _ (rpy + rpk) 
3.3 4fqtJvgfptc + rat +_ (r~o/-- rvk) 
3.4 2fqif~og __+ rqi + 2rpg 

Nature 

Known atoms 
Known background 
Known background 
Known background 
Known atoms 
Unwanted background 
Unwanted background 
Unwanted background 
Required atoms 
Unwanted background 
Unwanted background 
Unwanted background 
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The modified a-synthesis employs the coefficient 
~mod----(]rN]~--]Fpl~--Zf~}Fp and contains all the 
peaks of Table 1 with the elimination, however, of 
the known atoms and the known background, i.e., 
the peaks 1.1, 1-2, 1.3, 1.4 and 2.1. The isomorphous 
~-synthesis employs the coefficient 

and gives only the peaks under term III  viz., the 
required peaks 3.1, with only the peaks in 3.2, 3.3 and 
3-4 as background. The anomalous a-synthesis does not 
exist for centrosymmetric structures. 

5. The fl-class and the F-class 

We will now briefly outline the properties of the 
other types of syntheses. The fl-class of syntheses 
employs the coefficient (1/F~)]FN[ 2 which is the same 
as (1/Fp)[Flv[ ~, while the F-class employs the co- 
efficient [FNI 2 exp i0¢e. (It is to be noted that  exp lap 
is just plus or minus unity in the present case.) The 
detailed results are not given here to conserve space. 
The most interesting result is that  the isomorphous 
fl-synthesis gives only the structure with no back- 
ground at all in the case of a centrosymmetric struc- 
ture. The coefficient/?is of equation (37) Part II now 
reduces to 2FQ since exp i2~v----1, and the synthesis 
gives just the structure alone. The weights are, how- 
ever, doubled with respect to the non-centrosymmetric 
case. The anomalous fl-synthesis does not exist. The 
F-synthesis has properties intermediate between those 
of c~ and ft. 

6. Comparison of centrosymmetric  and 
non-centrosymmetric  cases 

I t  is worthwhile to compare the properties of the 
various syntheses in the centrosymmetric and non- 
centrosymmetric cases. Two important features emerge 
in this connection. The first is that  the number of 
distinct background peaks is much less in the centro- 

symmetric case as compared with that  in the non- 
centrosymmetric case. The reason for this is that  the 
Patterson of the latter contains many fewer peaks 
than the former. Since the background peaks arise 
because of the modulation of the non-origin peaks 
of the Patterson with the peaks of the deconvoluting 
agent, the background is considerably reduced in the 
centrosymmetric case. This particular point is best 
appreciated by considering the #is-synthesis. Whereas 
with a non-centrosymmetric crystal the above syn- 
thesis gives the structure against a small background, 
for a centro-symmetric crystal it gives just the struc- 
ture and the background is nil. 

The second point to be noted is that  the ratio of 
the strengths of the unknown atoms to known atoms 
is higher when centrosymmetry is present than when 
it is not present. This again is due to the fact that  all 
the non-origin peaks of the Patterson, except those 
at _+ 2rj, are double peaks. An exact result can be 
obtained in the case of the a-synthesis. Here the ratio 

~2 works out to be 2S~fQ~/(S~÷2Sp)fp~ in the centro- 
Spfqj/(S~-~-Sp )fpj in the non-centro- symmetric and 2 2 ,.~ 

symmetric case, which leads to an increase by a 
factor of 2 when the number of P atoms is small 
(i.e., Sp ~ SN). In the case of fl- and F-syntheses also 
there is an increase in the strength, but the exact 
value is not worked out here. I t  is found that  the value 
depends on the approximations employed in working 
out the modulus, phase, reciprocal etc., syntheses. 
Higher-order approximations are being worked out in 
this laboratory and these will be presented in a later 
part. 

The author is indebted to Prof. G. N. Ramachan- 
dran for helpful discussions. 
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General expressions are derived for the absorption corrections required in evaluating the intensities 
of beams diffracted from large crystal blocks. 

1. Introduction 

An account of the absorption corrections used in 
evaluating the intensities of beams diffracted from 

crystal specimens is given in the new edition of Vol. II  
of the International Tables for X-ray Crystallography 
(1959). Formulae are included for the absorption cor- 


